论文标题

Perelman的RICCI流量中的拓扑量子重力

Perelman's Ricci Flow in Topological Quantum Gravity

论文作者

Frenkel, Alexander, Horava, Petr, Randall, Stephen

论文摘要

我们发现我们最近构建的拓扑非递归量子重力的制度,其中perelman在Riemannian歧管上的RICCI流动方程似乎正好如路径积分中的定位方程式所致。在物理和数学之间的映射中,佩雷尔曼(Perelman)的dilaton的作用是通过我们的失误功能扮演的。 Perelman的本地固定体积条件在我们动力学术语中的$λ$参数时动态出现,$λ\ to- \ \ \ infty $。将公制流与DILATON流动解耦的诱因只是空间差异量表对称性的量规条件。我们展示了Perelman的$ {\ cal f} $和$ {\ cal W} $熵函数与我们的超级电位有关。我们解释了Perelman的$τ$函数的起源,该功能出现在$ {\ cal W} $熵功能中用于缩小孤子的功能,作为与时间翻译和空间缩放相关的Goldstone模式:事实上,实际上,在我们的量子重力中,Perelman的$τ$证明了Dilaton的作用,可以在Anisotropic speprations转换中发挥作用。 Perelman的流量与我们拓扑量子重力中的定位方程之间的地图需要有趣的磁场重新定义,其中包括对度量的重塑。将Perelman方程嵌入到拓扑量子重力中,现在可以将Ricci流的大量数学结果进口到物理学中,并以量子场理论的语言进行重新构成。

We find the regime of our recently constructed topological nonrelativistic quantum gravity, in which Perelman's Ricci flow equations on Riemannian manifolds appear precisely as the localization equations in the path integral. In this mapping between physics and mathematics, the role of Perelman's dilaton is played by our lapse function. Perelman's local fixed volume condition emerges dynamically as the $λ$ parameter in our kinetic term approaches $λ\to-\infty$. The DeTurck trick that decouples the metric flow from the dilaton flow is simply a gauge-fixing condition for the gauge symmetry of spatial diffeomorphisms. We show how Perelman's ${\cal F}$ and ${\cal W}$ entropy functionals are related to our superpotential. We explain the origin of Perelman's $τ$ function, which appears in the ${\cal W}$ entropy functional for shrinking solitons, as the Goldstone mode associated with time translations and spatial rescalings: In fact, in our quantum gravity, Perelman's $τ$ turns out to play the role of a dilaton for anisotropic scale transformations. The map between Perelman's flow and the localization equations in our topological quantum gravity requires an interesting redefinition of fields, which includes a reframing of the metric. With this embedding of Perelman's equations into topological quantum gravity, a wealth of mathematical results on the Ricci flow can now be imported into physics and reformulated in the language of quantum field theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源