论文标题

超越5G网络的多UAV辅助两阶段边缘计算中的节能资源分配

Energy-Efficient Resource Allocation in Multi-UAV-Assisted Two-Stage Edge Computing for Beyond 5G Networks

论文作者

Ei, Nway Nway, Alsenwi, Madyan, Tun, Yan Kyaw, Han, Zhu, Hong, Choong Seon

论文摘要

无人驾驶飞机(UAV)辅助的多访问边缘计算(MEC)已成为满足计算需求和严格延迟需求的能量构成设备的一个有前途的解决方案。在这项工作中,我们研究了多个由无人机辅助的两阶段MEC系统,其中计算密集型和延迟敏感的移动设备任务(MDS)在启用MEC的无人机和与MEC服务器附加的MEC型无人机和陆生基站(TBS)上合作执行。具体而言,无人机为移动设备提供计算和中继服务。在这方面,我们通过考虑上行链路传输的有限通信资源,无人机的计算资源以及任务的可容忍的延迟,来最大程度地减少MD和UAV的能源消耗,以最大程度地减少MD和UAV的能源消耗。公式化的问题是一个混合企业的非凸问题,它很难。因此,我们放宽了从二进制到连续值的通道分配变量。但是,由于变量之间的耦合,问题仍然是非凸。为了解决公式的优化问题,我们应用了块连续的上限最小化(BSUM)方法,该方法可以保证获得非convex目标函数的固定点。从本质上讲,非凸目标函数分解为多个子问题,然后以逐个块的方式求解。最后,进行了广泛的评估结果,以显示我们提出的框架的出色表现。

Unmanned aerial vehicle (UAV)-assisted multi-access edge computing (MEC) has become one promising solution for energy-constrained devices to meet the computation demand and the stringent delay requirement. In this work, we investigate a multiple UAVs-assisted two-stage MEC system in which the computation-intensive and delay-sensitive tasks of mobile devices (MDs) are cooperatively executed on both MEC-enabled UAVs and terrestrial base station (TBS) attached with the MEC server. Specifically, UAVs provide the computing and relaying services to the mobile devices. In this regard, we formulate a joint task offloading, communication and computation resource allocation problem to minimize the energy consumption of MDs and UAVs by considering the limited communication resources for the uplink transmission, the computation resources of UAVs and the tolerable latency of the tasks. The formulated problem is a mixed-integer non-convex problem which is NP hard. Thus, we relax the channel assignment variable from the binary to continuous values. However, the problem is still non-convex due to the coupling among the variables. To solve the formulated optimization problem, we apply the Block Successive Upper-bound Minimization (BSUM) method which guarantees to obtain the stationary points of the non-convex objective function. In essence, the non-convex objective function is decomposed into multiple subproblems which are then solved in a block-by-block manner. Finally, the extensive evaluation results are conducted to show the superior performance of our proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源