论文标题

准标记Poset,晶格,排列,图形,挖掘物,超图,点线几何形状

Quasi-projective posets, lattices, permutations, graphs, digraphs, hypergraphs, point-line geometries

论文作者

Jungábel, Éva

论文摘要

结构$ \ cal s $是准标准的,如果对于每个结构$ \ cal t $,则对于每个同构$ f:{\ cal s} \ rightarrow {\ cal t} $ {\ cal t} $和每个表达式$ j:{\ cal s}} j = f $。在本文中,我们表征了任意基础性,有限的置换,图形和图形的晶格和循环,没有循环,没有循环,有限的超图和有限点线几何形状的晶格。

A structure $\cal S$ is quasi-projective if for every structure $\cal T$, for every homomorphism $f : {\cal S} \rightarrow {\cal T}$ and every epimorphism $j: {\cal S}\rightarrow {\cal T}$ there is an endomorphism $ϕ$ of $\cal S$ such that $ϕ\circ j=f$. In this paper, we characterise the quasi-projective posets and lattices of arbitrary cardinalities, finite permutations, graphs and digraphs of arbitrary cardinalities with loops and without loops, finite hypergraphs, and finite point-line geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源