论文标题
布尔代数,莫里塔不变性和代数K理论
Boolean algebras, Morita invariance, and the algebraic K-theory of Lawvere theories
论文作者
论文摘要
律师理论的代数K理论是一种概念装置,旨在阐明代数结构的对称组的稳定同源性,例如置换群体和自由组的自动形态群体。在本文中,我们充分解决了莫里塔等效类别的律师理论如何与代数K理论相互作用的问题。一方面,我们表明,在矩阵理论的通道下,较高的代数K理论是不变的。另一方面,我们表明,较高的代数K理论并没有完全不变,因为在非丑闻背景下,同性恋者的行为:我们计算所有律师理论莫里塔(Morita)的K理论等同于布尔(Boolean代数理论)。
The algebraic K-theory of Lawvere theories is a conceptual device to elucidate the stable homology of the symmetry groups of algebraic structures such as the permutation groups and the automorphism groups of free groups. In this paper, we fully address the question of how Morita equivalence classes of Lawvere theories interact with algebraic K-theory. On the one hand, we show that the higher algebraic K-theory is invariant under passage to matrix theories. On the other hand, we show that the higher algebraic K-theory is not fully Morita invariant because of the behavior of idempotents in non-additive contexts: We compute the K-theory of all Lawvere theories Morita equivalent to the theory of Boolean algebras.