论文标题

使用CMOS技术扩展基于硅的量子计算:最新,挑战和观点

Scaling silicon-based quantum computing using CMOS technology: State-of-the-art, Challenges and Perspectives

论文作者

Gonzalez-Zalba, M. F., de Franceschi, S., Charbon, E., Meunier, T., Vinet, M., Dzurak, A. S.

论文摘要

互补的金属氧化物半导体(CMOS)技术通过将人类带入数字时代,从根本上改造了世界。将更多的晶体管塞入相同的物理空间已使计算性能呈指数增长,这种策略最近受到小型化的复杂性和成本的增加而阻碍了这种策略。为了继续在计算性能方面取得显着增长,必须开发新的计算范例,例如量子计算。但是,找到最佳的物理系统来处理量子信息,并将其扩展到构建通用量子计算机所需的大量量子位仍然是一个重大挑战。 Nanodevice工程的最新突破表明,现在可以以类似于硅现场效应晶体管制造量子位,为利用CMOS行业的专业知识开放,以应对扩展挑战。在本文中,我们专注于基于CMOS技术的量子计算系统的扩展前景的分析。

Complementary metal-oxide semiconductor (CMOS) technology has radically reshaped the world by taking humanity to the digital age. Cramming more transistors into the same physical space has enabled an exponential increase in computational performance, a strategy that has been recently hampered by the increasing complexity and cost of miniaturization. To continue achieving significant gains in computing performance, new computing paradigms, such as quantum computing, must be developed. However, finding the optimal physical system to process quantum information, and scale it up to the large number of qubits necessary to build a general-purpose quantum computer, remains a significant challenge. Recent breakthroughs in nanodevice engineering have shown that qubits can now be manufactured in a similar fashion to silicon field-effect transistors, opening an opportunity to leverage the know-how of the CMOS industry to address the scaling challenge. In this article, we focus on the analysis of the scaling prospects of quantum computing systems based on CMOS technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源