论文标题

可学习的Gabor调制复合价值网络,以实现鲁棒性

Learnable Gabor modulated complex-valued networks for orientation robustness

论文作者

Richards, Felix, Paiement, Adeline, Xie, Xianghua, Sola, Elisabeth, Duc, Pierre-Alain

论文摘要

鉴于输入数据通常表现出姿势差异,因此在许多计算机视觉任务中,对转换的鲁棒性是可取的。虽然翻译不变性和模棱两可是CNN的一种现象,但通常通过数据增强来鼓励对其他转换的敏感性。我们研究了使用学习的Gabor滤波器对复杂有价值的卷积权重的调节,以实现方向鲁棒性。所得网络可以使用一组可学习的旋转参数生成无插值的方向依赖性特征。通过选择保留或池取向通道,可以直接控制均衡性与不变性的选择。此外,我们通过提出的循环加波卷积引入旋转重量键,进一步使人们对旋转进行了概括。我们将这些创新结合到可学习的Gabor卷积网络(LGCN)中,这些卷积网络是参数有效的,并提供了增加模型的复杂性。我们证明了它们对MNIST,BSD和银河cirri的模拟和真实天文图像的数据集的旋转不变性和对象。

Robustness to transformation is desirable in many computer vision tasks, given that input data often exhibits pose variance. While translation invariance and equivariance is a documented phenomenon of CNNs, sensitivity to other transformations is typically encouraged through data augmentation. We investigate the modulation of complex valued convolutional weights with learned Gabor filters to enable orientation robustness. The resulting network can generate orientation dependent features free of interpolation with a single set of learnable rotation-governing parameters. By choosing to either retain or pool orientation channels, the choice of equivariance versus invariance can be directly controlled. Moreover, we introduce rotational weight-tying through a proposed cyclic Gabor convolution, further enabling generalisation over rotations. We combine these innovations into Learnable Gabor Convolutional Networks (LGCNs), that are parameter-efficient and offer increased model complexity. We demonstrate their rotation invariance and equivariance on MNIST, BSD and a dataset of simulated and real astronomical images of Galactic cirri.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源