论文标题
通过各向异性曲率流动凸超曲面
Deforming a convex hypersurface by anisotropic curvature flows
论文作者
论文摘要
在本文中,我们考虑了欧几里得n空间中凸置性的完全非线性曲率流。该流程涉及主曲率半径的k-Thth基本对称函数和支持函数的功能。在一些适当的假设下,我们证明了这种流动的长期存在和收敛性。作为一个应用程序,我们为Orlicz-Christoffel-Minkowski问题提供了平滑解决方案。
In this paper, we consider a fully nonlinear curvature flow of a convex hypersurface in the Euclidean n-space. This flow involves k-th elementary symmetric function for principal curvature radii and a function of support function. Under some appropriate assumptions, we prove the long-time existence and convergence of this flow. As an application, we give the existence of smooth solutions to the Orlicz-Christoffel-Minkowski problem.