论文标题

车辆交通流量的因果关系图

Causality Graph of Vehicular Traffic Flow

论文作者

Molavipour, Sina, Bassi, Germán, Čičić, Mladen, Skoglund, Mikael, Johansson, Karl Henrik

论文摘要

在智能运输系统中,网络中不同点的交通流量的影响和关系是有价值的功能,可以利用用于控制系统设计和交通预测。在本文中,我们根据有指示信息(一种良好的数据驱动措施)来定义因果关系的概念,以表示车辆交通网络节点之间的有效连通性。该概念表明在任何给定点的交通流量是否会影响将来另一点的流量,更重要的是,揭示了这种效果的程度。与表达网络中的连接的常规方法相反,它不仅限于线性模型和正态性条件。在这项工作中,有针对性的信息用于确定网络的基础图结构,表示有向信息图,该信息图表示网络中节点之间的因果关系。我们设计了一种算法来估计每个链接中效果的程度并构建图形。然后,使用合成数据和车辆流量的实际汇总数据分析该算法的性能。

In an intelligent transportation system, the effects and relations of traffic flow at different points in a network are valuable features which can be exploited for control system design and traffic forecasting. In this paper, we define the notion of causality based on the directed information, a well-established data-driven measure, to represent the effective connectivity among nodes of a vehicular traffic network. This notion indicates whether the traffic flow at any given point affects another point's flow in the future and, more importantly, reveals the extent of this effect. In contrast with conventional methods to express connections in a network, it is not limited to linear models and normality conditions. In this work, directed information is used to determine the underlying graph structure of a network, denoted directed information graph, which expresses the causal relations among nodes in the network. We devise an algorithm to estimate the extent of the effects in each link and build the graph. The performance of the algorithm is then analyzed with synthetic data and real aggregated data of vehicular traffic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源