论文标题

IC神经元:建立神经网络的有效单元

IC Neuron: An Efficient Unit to Construct Neural Networks

论文作者

An, Junyi, Liu, Fengshan, Zhao, Jian, Shen, Furao

论文摘要

作为一种流行的机器学习方法,可以使用神经网络来解决许多复杂的任务。它们的强大概括能力来自基本神经元模型的表示能力。最流行的神经元是MP神经元,它使用线性转换和非线性激活函数连续处理输入。受物理学中弹性碰撞模型的启发,我们提出了一个可以代表更复杂分布的新神经元模型。我们称其为层间碰撞(IC)神经元。 IC神经元将输入空间划分为用于表示不同线性变换的多个子空间。此操作增强了非线性表示能力,并强调了给定任务的一些有用的输入功能。我们通过将IC神经元集成到完全连接(FC),卷积和经常性结构中来构建IC网络。 IC网络在广泛的实验中优于传统网络。我们认为,IC神经元可以是建立网络结构的基本单元。

As a popular machine learning method, neural networks can be used to solve many complex tasks. Their strong generalization ability comes from the representation ability of the basic neuron model. The most popular neuron is the MP neuron, which uses a linear transformation and a non-linear activation function to process the input successively. Inspired by the elastic collision model in physics, we propose a new neuron model that can represent more complex distributions. We term it Inter-layer collision (IC) neuron. The IC neuron divides the input space into multiple subspaces used to represent different linear transformations. This operation enhanced non-linear representation ability and emphasizes some useful input features for the given task. We build the IC networks by integrating the IC neurons into the fully-connected (FC), convolutional, and recurrent structures. The IC networks outperform the traditional networks in a wide range of experiments. We believe that the IC neuron can be a basic unit to build network structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源