论文标题
来自以下条件的界限,具有两个真实标量场和希格斯玻色子的一般标量电势
Boundedness from below conditions for a general scalar potential of two real scalars fields and the Higgs boson
论文作者
论文摘要
两个真实标量场和希格斯玻色子的最一般标量电势是大约3个变量的四分位均质多项式,该变量定义了第4阶3尺寸对称张量。因此,这种标量势的下面的界限涉及相应张量的正(半)确定性。因此,在本文中,我们主要讨论了这种特殊的第四阶三维对称张量的阳性(半)确定性的分析表达式。首先,给出了分析必要和足够的条件,以测试第四阶2维对称张量的正(半)确定性。此外,通过这种结果,对于两个真实标量场和希格斯玻色子的一般标量电势,从下方获得了界限的必要条件。
The most general scalar potential of two real scalar fields and a Higgs boson is a quartic homogeneous polynomial about 3 variables, which defines a 4th order 3 dimensional symmetric tensor. Hence, the boundedness from below of such a scalar potential involves the positive (semi-)definiteness of the corresponding tensor. So, we mainly discuss analytical expressions of positive (semi-)definiteness for such a special 4th order 3-dimension symmetric tensor in this paper. Firstly, an analytically necessary and sufficient condition is given to test the positive (semi-)definiteness of a 4th order 2 dimensional symmetric tensor. Furthermore, by means of such a result, the necessary and sufficient conditions of the boundedness from below are obtained for a general scalar potential of two real scalar fields and the Higgs boson.