论文标题
可压缩的Navier-Stokes方程的大摩擦极限,具有一般三维域中的Navier边界条件
Large friction limit of the compressible Navier-Stokes equations with Navier Boundary conditions in general three-dimensional domains
论文作者
论文摘要
在本文中,我们研究了在$ \ Mathbb {r}^3 $中,带有不同边界条件的有限集中的可压缩性,正压流的Navier-Stokes方程。具体而言,我们证明,Navier-Stokes方程的局部时间平滑解会收敛到无滑动边界条件的Navier-Stokes方程的平滑解决方案,因为Navier摩擦系数倾向于无穷大。
In this paper, we study the Navier-Stokes equations of compressible, barotropic flow posed in a bounded set in $\mathbb{R}^3$ with different boundary conditions. Specifically, we prove that the local-in-time smooth solution of the Navier-Stokes equations with Navier boundary condition converges to the smooth solution of the Navier-Stokes equations with no-slip boundary condition as the Navier friction coefficient tends to infinity.