论文标题

道路交通动态中的计算收获

Computation harvesting in road traffic dynamics

论文作者

Ando, Hiroyasu, Okamoto, T., Chang, H., Noguchi, T., Nakaoka, Shinji

论文摘要

由于人工智能和物联网技术(IoT)技术的最新进展,大数据收集了高数据,而其计算资源和能源成本则很大。此外,通常收集数据但不使用数据。为了解决这些问题,我们为遵循自然计算系统(例如人脑)的计算模型提出了一个框架,并且不严重依赖电子计算机。特别是,我们提出了一种基于“计算收获”概念的方法,该方法使用了从富含传感器收集的物联网数据,并将大多数计算过程作为收集的数据将大部分计算过程放在现实世界中。该方面假设大规模计算可以快速且有弹性。在此,我们使用现实世界的道路交通数据执行预测任务,以显示计算收获的可行性。首先,我们表明,由于从时空动力学到合成特定模式的多种收获组合,交通流量的实质计算对传感器故障和实时交通变化具有弹性。接下来,由于其计算成本低,我们将这种方法的实用性视为实时预测。最后,我们表明,与常规方法相比,我们的方法需要较低的资源,同时提供可比的性能。

Owing to recent advances in artificial intelligence and internet of things (IoT) technologies, collected big data facilitates high computational performance, while its computational resources and energy cost are large. Moreover, data are often collected but not used. To solve these problems, we propose a framework for a computational model that follows a natural computational system, such as the human brain, and does not rely heavily on electronic computers. In particular, we propose a methodology based on the concept of `computation harvesting', which uses IoT data collected from rich sensors and leaves most of the computational processes to real-world phenomena as collected data. This aspect assumes that large-scale computations can be fast and resilient. Herein, we perform prediction tasks using real-world road traffic data to show the feasibility of computation harvesting. First, we show that the substantial computation in traffic flow is resilient against sensor failure and real-time traffic changes due to several combinations of harvesting from spatiotemporal dynamics to synthesize specific patterns. Next, we show the practicality of this method as a real-time prediction because of its low computational cost. Finally, we show that, compared to conventional methods, our method requires lower resources while providing a comparable performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源