论文标题

与速率依赖性塑料材料中的应变定位正规化和模式形成,并与多物理耦合

Strain localization regularization and patterns formation in rate-dependent plastic materials with multiphysics coupling

论文作者

Jacquey, Antoine B., Rattez, Hadrien, Veveakis, Manolis

论文摘要

应变定位是在发生耗散变形机制的可变形固体物质中发生的不稳定现象。这种不稳定性的特征在于位移或速度场在有限厚度的区域中定位,并且通常与材料故障有关。在材料工程和自然科学的几个领域中,需要估算局部变形的厚度,以准确预测局部应变区域内物理特性和材料强度的进化。在这种情况下,科学家和工程师通常依靠数值建模技术来研究固体材料中的应变定位。然而,由于模型组成型定律缺乏内部长度,弹性塑料材料的经典连续性理论无法估算应变定位厚度。在这项研究中,我们研究了在哪些条件下,多物理耦合使使用速率依赖性可塑性的应变定位问题正常。我们表明,将本构定律耦合以变形与代表耗散状态变量的单个通用扩散反应方程,足以使在某些条件下对塑料电位的软化参数进行适当的问题。在这些情况下,我们证明了速率依赖性的可塑性和多物理耦合会导致材料不稳定性,描绘了由物理参数控制的一个或几个内部长度尺度,从而形成了规则或不稳定的模式。当我们考虑方程式的一般形式时,本研究中提出的结果可以应用于材料工程和地球科学群落中的大量示例。

Strain localization is an instability phenomenon occurring in deformable solid materials which undergo dissipative deformation mechanisms. Such instability is characterized by the localization of the displacement or velocity fields in a zone of finite thickness and is generally associated with the failure of materials. In several fields of material engineering and natural sciences, estimating the thickness of localized deformation is required to make accurate predictions of the evolution of the physical properties within localized strain regions and of the material strength. In this context, scientists and engineers often rely on numerical modeling techniques to study strain localization in solid materials. However, classical continuum theory for elasto-plastic materials fails at estimating strain localization thicknesses due to the lack of an internal length in the model constitutive laws. In this study, we investigate at which conditions multiphysics coupling enables to regularize the problem of strain localization using rate-dependent plasticity. We show that coupling the constitutive laws for deformation to a single generic diffusion-reaction equation representing a dissipative state variable can be sufficient to regularize the ill-posed problem under some conditions on the softening parameters in the plastic potential. We demonstrate in these cases how rate-dependent plasticity and multiphysics coupling can lead to material instabilities depicting one or several internal length scales controlled by the physical parameters resulting in the formation of regular or erratic patterns. As we consider a general form of the equations, the results presented in this study can be applied to a large panel of examples in the material engineering and geosciences communities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源