论文标题

基于LSTM的交通负载平衡和边缘系统的资源分配

LSTM-based Traffic Load Balancing and Resource Allocation for an Edge System

论文作者

Dlamini, Thembelihle, Vilakati, Sifiso

论文摘要

通过计算能力授权的小型小细胞基站(SBS)的大量部署是5G蜂窝网络采用的最巧妙的解决方案之一,用于满足可预见的数据爆炸和移动应用所需的超低潜伏期。具有多访问边缘计算(MEC)的SBS的能力已成为一种暂定解决方案,以克服网络边缘移动应用程序所需的延迟需求和带宽消耗。 MEC范式提供了有限的资源来支持计算,从而要求将智能机制用于资源分配。使用绿色能源为网络设备供电(例如基站(BSS),MEC服务器)引起了人们的注意,以最大程度地减少碳足迹和网络运营成本。但是,由于其高度间歇性和不可预测性,学习方法的采用是必需的。对于智能边缘系统管理,本文提出了一种基于绿色的边缘网络管理(GENM)算法,该算法是一种在线边缘系统管理算法,用于在MEC服务器内实现BSS和能源节省的基于绿色的负载平衡。主要目标是最大程度地减少整体能源消耗,并保证网络中的服务质量(QoS)。为此,GenM算法对BSS进行动态管理,自动化和重新配置计算资源,以及对快速可调激光驱动程序的开/关转换,并在MEC服务器中加上位置感知的流量调度。获得的模拟结果验证了我们的分析,并证明了与基准算法相比,GENM的出色性能。

The massive deployment of small cell Base Stations (SBSs) empowered with computing capabilities presents one of the most ingenious solutions adopted for 5G cellular networks towards meeting the foreseen data explosion and the ultra-low latency demanded by mobile applications. This empowerment of SBSs with Multi-access Edge Computing (MEC) has emerged as a tentative solution to overcome the latency demands and bandwidth consumption required by mobile applications at the network edge. The MEC paradigm offers a limited amount of resources to support computation, thus mandating the use of intelligence mechanisms for resource allocation. The use of green energy for powering the network apparatuses (e.g., Base Stations (BSs), MEC servers) has attracted attention towards minimizing the carbon footprint and network operational costs. However, due to their high intermittency and unpredictability, the adoption of learning methods is a requisite. Towards intelligent edge system management, this paper proposes a Green-based Edge Network Management (GENM) algorithm, which is a online edge system management algorithm for enabling green-based load balancing in BSs and energy savings within the MEC server. The main goal is to minimize the overall energy consumption and guarantee the Quality of Service (QoS) within the network. To achieve this, the GENM algorithm performs dynamic management of BSs, autoscaling and reconfiguration of the computing resources, and on/off switching of the fast tunable laser drivers coupled with location-aware traffic scheduling in the MEC server. The obtained simulation results validate our analysis and demonstrate the superior performance of GENM compared to a benchmark algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源