论文标题
随机步行的速度在加尔顿 - 瓦特森树上带有消失的电导
The speed of random walk on Galton-Watson trees with vanishing conductances
论文作者
论文摘要
在本文中,我们考虑在带有随机电导的Galton-Watson树上随机行走。在这些树上,步行者到根的距离可以满足大量法律,并限制了行走的有效速度或速度。我们研究了速度的规律性,这是电导分布的函数,特别是当电导分布收敛到非涡旋极限时。
In this paper we consider random walks on Galton-Watson trees with random conductances. On these trees, the distance of the walker to the root satisfies a law of large numbers with limit the effective velocity, or speed of the walk. We study the regularity of the speed as a function of the distribution of conductances, in particular when the distribution of conductances converges to a non-elliptic limit.