论文标题

deepphasecut:无监督的傅里叶阶段检索的相位深度放松

DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval

论文作者

Cha, Eunju, Lee, Chanseok, Jang, Mooseok, Ye, Jong Chul

论文摘要

傅立叶相的检索是一个经典的问题,即仅从其傅立叶变换的测得的幅度恢复信号。尽管Fienup型算法在空间和傅立叶领域都使用先验知识,但在实践中已被广泛使用,但它们通常可以停在本地最小值中。诸如Phaselift和PhaseCut之类的现代方法可以在凸放松的帮助下提供性能保证。但是,这些算法通常在计算中用于实际使用。为了解决这个问题,我们提出了一个新颖的,无监督的,喂养的神经网络,用于傅立叶相检索,从而可以立即进行高质量的重建。与现有的深度学习方法不同,将神经网络用作正规化术语或用于监督培训的端到端黑框模型,我们的算法是在无监督的学习框架中对Phasecut算法的馈送神经网络实施。具体而言,我们的网络由两个发电机组成:一个用于使用PhAsecut损失的相位估计,然后是另一个用于图像重建的发电机,所有发电机均使用无匹配数据的Cyclegan框架同时训练。还揭示了与古典Fienup型算法和最近破坏对称性学习方法的链接。广泛的实验表明,在傅立叶期检索问题中,提出的方法优于所有现有方法。

Fourier phase retrieval is a classical problem of restoring a signal only from the measured magnitude of its Fourier transform. Although Fienup-type algorithms, which use prior knowledge in both spatial and Fourier domains, have been widely used in practice, they can often stall in local minima. Modern methods such as PhaseLift and PhaseCut may offer performance guarantees with the help of convex relaxation. However, these algorithms are usually computationally intensive for practical use. To address this problem, we propose a novel, unsupervised, feed-forward neural network for Fourier phase retrieval which enables immediate high quality reconstruction. Unlike the existing deep learning approaches that use a neural network as a regularization term or an end-to-end blackbox model for supervised training, our algorithm is a feed-forward neural network implementation of PhaseCut algorithm in an unsupervised learning framework. Specifically, our network is composed of two generators: one for the phase estimation using PhaseCut loss, followed by another generator for image reconstruction, all of which are trained simultaneously using a cycleGAN framework without matched data. The link to the classical Fienup-type algorithms and the recent symmetry-breaking learning approach is also revealed. Extensive experiments demonstrate that the proposed method outperforms all existing approaches in Fourier phase retrieval problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源