论文标题

Crouzeix猜想的抽象方法

An abstract approach to the Crouzeix conjecture

论文作者

Clouâtre, Raphaël, Ostermann, Maëva, Ransford, Thomas

论文摘要

令$ a $为统一的代数,$θ:a \ to m_n(\ mathbb {c})$是连续的同构态,$α: \ quad(a)。 \]我们表明$ \ |θ\ | \ le 1+ \ sqrt {2} $,而$ 1+\ sqrt2 $是尖锐的。我们推测,如果进一步的$α(1)= 1 $,那么我们可以得出结论,$ \ |θ\ | \ le2 $。这将为Crouzeix猜想在数值范围内产生积极的解决方案。为了支持我们的猜想,我们证明这在两种特殊情况下是正确的。我们还讨论了我们的猜想的完全有限的版本,该版本将扩张理论带入戏剧思想。

Let $A$ be a uniform algebra, $θ:A\to M_n(\mathbb{C})$ be a continuous homomorphism and $α:A\to A$ be an antilinear contraction such that \[ \|θ(f)+θ(α(f))^*\|\le 2\|f\| \quad(f\in A). \] We show that $\|θ\|\le 1+\sqrt{2}$, and that $1+\sqrt2$ is sharp. We conjecture that, if further $α(1)=1$, then we may conclude that $\|θ\|\le2$. This would yield a positive solution to the Crouzeix conjecture on numerical ranges. In support of our conjecture, we prove that it is true in two special cases. We also discuss a completely bounded version of our conjecture that brings into play ideas from dilation theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源