论文标题

边缘自适应混合式正则化模型用于图像脱张

Edge Adaptive Hybrid Regularization Model For Image Deblurring

论文作者

Zhang, Tingting, Chen, Jie, Wu, Caiying, He, Zhifei, Zeng, Tieyong, Jin, Qiyu

论文摘要

参数选择对于基于正则化的图像恢复方法至关重要。一般而言,整个图像中正规化项目的空间固定参数在边缘和光滑区域都表现不佳。正则化项目的较大参数可以在光滑的区域降低噪声,但要模糊边缘区域,而小参数则锐化边缘,但会导致残留噪声。在本文中,提出了一种结合谐波和电视模型的空间自适应正则化模型,以重建嘈杂和模糊的图像。在提出的模型中,它根据边缘信息检测边缘,然后在空间上调整每个像素的Tikhonov和TV正则化项的参数。因此,在迭代过程中,边缘信息矩阵也将动态更新。在计算上,新建立的模型是凸,可以通过线性收敛速率的乘数(SPADMM)的半速率交替方向方法来求解。数值模拟结果表明,所提出的模型可以有效地保留图像边缘并同时消除噪声和模糊。与最先进的算法相比,它在PSNR,SSIM和视觉质量方面优于其他方法。

The parameter selection is crucial to regularization based image restoration methods. Generally speaking, a spatially fixed parameter for regularization item in the whole image does not perform well for both edge and smooth areas. A larger parameter of regularization item reduces noise better in smooth areas but blurs edge regions, while a small parameter sharpens edge but causes residual noise. In this paper, an automated spatially adaptive regularization model, which combines the harmonic and TV models, is proposed for reconstruction of noisy and blurred images. In the proposed model, it detects the edges and then spatially adjusts the parameters of Tikhonov and TV regularization terms for each pixel according to the edge information. Accordingly, the edge information matrix will be also dynamically updated during the iterations. Computationally, the newly-established model is convex, which can be solved by the semi-proximal alternating direction method of multipliers (sPADMM) with a linear-rate convergence rate. Numerical simulation results demonstrate that the proposed model effectively reserves the image edges and eliminates the noise and blur at the same time. In comparison to state-of-the-art algorithms, it outperforms other methods in terms of PSNR, SSIM and visual quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源