论文标题

两层流体中的薄水平圆柱体的被困模式和共振

Trapped modes and resonances for thin horizontal cylinders in a two-layer fluid

论文作者

Zhevandrov, P., Merzon, A., Rodríguez, M. I. Romero, Méndez, J. E. De la Paz

论文摘要

线性水波问题的精确溶液在两层流体中描述了小(但相当任意)横截面的倾斜水平圆柱体上的倾斜波,以表征圆柱体的“薄度”的小参数的聚合物的形式构建。这些系列的术语是通过对圆柱体经过的无界流体流动的拉普拉斯方程的外部Neumann问题的解决方案表示的。获得的解决方案描述了与问题的离散特征值相对应的捕获模式(位于连续频谱的截止频率附近)和谐振靠近嵌入式截止点。当这些谐振转换为先前未观察到的嵌入式捕获模式时,我们介绍了圆柱体浸没的某些条件。

Exact solutions of the linear water-wave problem describing oblique waves over a submerged horizontal cylinder of small (but otherwise fairly arbitrary) cross-section in a two-layer fluid are constructed in the form of convergent series in powers of the small parameter characterizing the "thinness" of the cylinder. The terms of these series are expressed through the solution of the exterior Neumann problem for the Laplace equation describing the flow of unbounded fluid past the cylinder. The solutions obtained describe trapped modes corresponding to discrete eigenvalues of the problem (lying close to the cut-off frequency of the continuous spectrum) and resonances lying close to the embedded cut-off. We present certain conditions for the submergence of the cylinder in the upper layer when these resonances convert into previously unobserved embedded trapped modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源