论文标题
动力学系统的富集功能极限定理
Enriched functional limit theorems for dynamical systems
论文作者
论文摘要
我们证明,在存在较大值的群集的情况下,动态系统的功能极限定理,当将其求和并适当地归一化时,将在同一时间点观察到的限制过程的跳跃中崩溃。为了跟踪群集信息,这些信息会在Càdlàg函数空间中通常的Skorohod拓扑中丢失,我们引入了一个新的空间,该空间概括了Whitt引入的更为通用的空间。我们的主要应用是在动态链接的最大集合(例如周期点)上最大化的重尾可观察功能的双曲线和非均匀扩展的动力系统。我们还研究了极端过程的限制和记录时间点过程,可观察到不一定是沉重的尾巴。所研究的应用包括双曲系统,例如Anosov差异性,以及非均匀扩展的地图,例如具有Benedicks-Carleson类型的临界点的地图或Pomeau-Manneville或Liverani-Saussol-Saussol-Vaienti Map的临界点。主要工具是对点过程的极限定理,其装饰是源自两端序列的装饰,称为转换后的锚定尾部工艺。
We prove functional limit theorems for dynamical systems in the presence of clusters of large values which, when summed and suitably normalised, get collapsed in a jump of the limiting process observed at the same time point. To keep track of the clustering information, which gets lost in the usual Skorohod topologies in the space of càdlàg functions, we introduce a new space which generalises the already more general spaces introduced by Whitt. Our main applications are to hyperbolic and non-uniformly expanding dynamical systems with heavy-tailed observable functions maximised at dynamically linked maximal sets (such as periodic points). We also study limits of extremal processes and record times point processes for observables not necessarily heavy tailed. The applications studied include hyperbolic systems such as Anosov diffeomorphisms, but also non-uniformly expanding maps such as maps with critical points of Benedicks-Carleson type or indifferent fixed points such as Pomeau-Manneville or Liverani-Saussol-Vaienti maps. The main tool is a limit theorem for point processes with decorations derived from a bi-infinite sequence called the transformed anchored tail process.