论文标题

最小的奇异最小表面

Singular minimal surfaces which are minimal

论文作者

Aydin, Muhittin Evren, Erdur, Ayla, Ergut, Mahmut

论文摘要

在本文中,我们讨论了最小的欧几里得3空间r^{3}中的奇异最小表面。实际上,这样的表面不过是平面,一个微不足道的结果。但是,当我们通过使用特殊的半对称度量连接而不是r^{3}上的levi-civita连接来修改奇异最小值的常规条件时,获得了非平凡的结果。通过这种新的联系,我们证明,除了平面外,最小的奇异最小表面是广义圆柱体,提供了明确的方程式。当我们使用特殊的半对称性非金属连接时,会观察到微不足道的结果。此外,我们的讨论适用于Lorentz-Minkowski 3空间。

In the present paper, we discuss the singular minimal surfaces in a Euclidean 3-space R^{3} which are minimal. In fact, such a surface is nothing but a plane, a trivial outcome. However, a non-trivial outcome is obtained when we modify the usual condition of singular minimality by using a special semi-symmetric metric connection instead of the Levi-Civita connection on R^{3}. With this new connection, we prove that, besides planes, the singular minimal surfaces which are minimal are the generalized cylinders, providing their explicit equations. A trivial outcome is observed when we use a special semi-symmetric non-metric connection. Furthermore, our discussion is adapted to the Lorentz-Minkowski 3-space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源