论文标题

基于激光雷达的移动机器人计划的勘探和离散化

Lidar-based exploration and discretization for mobile robot planning

论文作者

Chen, Yuxiao, Singletary, Andrew, Ames, Aaron D.

论文摘要

在机器人应用中,控制和驱动处理系统和环境的连续描述,而高级计划通常可以使用离散的描述。本文考虑了通过传感器数据弥合机器人系统的低级控制和高级计划的问题。特别是,我们提出了一种离散化算法,该算法通过LIDAR点云数据识别自由多面体。然后,构造一个过渡图,每个节点对应于一个自由层面,并且如果两个相应的自由型多面相交,则将两个节点与边缘连接。此外,距离度量与每个边缘相关联,这允许评估高级计划过渡的质量(或成本)。对于低级控制,自由层面是对环境的方便编码,并允许计划实现高级计划的无碰撞轨迹。在高保真性ROS模拟中证明了结果,并使用无人机和Segway进行了实验。

In robotic applications, the control, and actuation deal with a continuous description of the system and environment, while high-level planning usually works with a discrete description. This paper considers the problem of bridging the low-level control and high-level planning for robotic systems via sensor data. In particular, we propose a discretization algorithm that identifies free polytopes via lidar point cloud data. A transition graph is then constructed where each node corresponds to a free polytope and two nodes are connected with an edge if the two corresponding free polytopes intersect. Furthermore, a distance measure is associated with each edge, which allows for the assessment of quality (or cost) of the transition for high-level planning. For the low-level control, the free polytopes act as a convenient encoding of the environment and allow for the planning of collision-free trajectories that realizes the high-level plan. The results are demonstrated in high-fidelity ROS simulations and experiments with a drone and a Segway.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源