论文标题

非平面二聚体模型中的新兴分裂动力学

Emergent Fracton Dynamics in a Non-Planar Dimer Model

论文作者

Feldmeier, Johannes, Pollmann, Frank, Knap, Michael

论文摘要

我们以双层几何形状的二聚体模型的形式研究了纯$ u(1)$ u(1)$ lattice量规理论的晚期放松动力学。为此,我们首先通过构建可以归因于拓扑孤子的存在的全球保护法来制定适当的流体动力运输概念。然后,根据本保护定律收取的局部对象的相关函数可用于研究后期动力学的通用特性,适用于量子和经典系统。通过经典的可模拟自动机电路执行时间演变,揭示了系统的非平衡性能的丰富现象学:对于大量相关初始状态,本地电荷有效地限制在Quasi-Two-TWO二维系统中沿一维“管”移动,显示出类似于Fracton型的Mobility Contrabilsiber tights tike timellib obyitions tights。这些试管稳定的时间尺度随着系统尺寸的增加而稳定,在热力学极限下产生了一种新的机制。我们通过在准二维极限中研究系统来进一步探索几何形状的作用,在该系统中,由于大量保守量的出现,希尔伯特空间被强烈碎裂。这提供了最近引入的“运动统计局部积分”的概念,该概念通过映射到经典示踪剂扩散问题来确定其通用的异常流体动力学。我们通过讨论我们的方法如何推广以研究其他晶格仪理论的运输方式来结束。

We study the late time relaxation dynamics of a pure $U(1)$ lattice gauge theory in the form of a dimer model on a bilayer geometry. To this end, we first develop a proper notion of hydrodynamic transport in such a system by constructing a global conservation law that can be attributed to the presence of topological solitons. The correlation functions of local objects charged under this conservation law can then be used to study the universal properties of the dynamics at late times, applicable to both quantum and classical systems. Performing the time evolution via classically simulable automata circuits unveils a rich phenomenology of the system's non-equilibrium properties: For a large class of relevant initial states, local charges are effectively restricted to move along one-dimensional 'tubes' within the quasi-two-dimensional system, displaying fracton-like mobility constraints. The time scale on which these tubes are stable diverges with increasing systems size, yielding a novel mechanism for non-ergodic behavior in the thermodynamic limit. We further explore the role of geometry by studying the system in a quasi-one-dimensional limit, where the Hilbert space is strongly fragmented due to the emergence of an extensive number of conserved quantities. This provides an instance of a recently introduced concept of 'statistically localized integrals of motion', whose universal anomalous hydrodynamics we determine by a mapping to a problem of classical tracer diffusion. We conclude by discussing how our approach might generalize to study transport in other lattice gauge theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源