论文标题
使用高斯流程的实验设计基于安全的模型设计
Safe model-based design of experiments using Gaussian processes
论文作者
论文摘要
动力学模型的构建已成为行业过程发展和规模扩大的必不可少的一步。基于模型的实验设计(MBDOE)已被广泛用于改善非线性动态系统中的参数精度。这个过程需要考虑参数和结构不确定性,因为在系统上执行最佳设计实验时,对系统施加的可行性约束很可能会导致不安全的实验条件。在这项工作中,以两倍的方式使用高斯过程:1)量化物理系统的不确定性实现并计算植物模型不匹配,2)在考虑参数不确定性时计算最佳实验设计。此方法为基于模型的实验设计的概率满意度提供了对约束的概率满意度的保证。该方法可以帮助使用自适应信任区域,以促进令人满意的局部近似。所提出的方法能够从有限的初步知识开始,从而允许设计最佳实验,从而确保对参数空间进行安全探索。通过说明性案例研究,有关流动反应器中动力学模型的参数识别的说明性案例研究证明了该方法的性能。
Construction of kinetic models has become an indispensable step in the development and scale up of processes in the industry. Model-based design of experiments (MBDoE) has been widely used for the purpose of improving parameter precision in nonlinear dynamic systems. This process needs to account for both parametric and structural uncertainty, as the feasibility constraints imposed on the system may well turn out to be violated leading to unsafe experimental conditions when an optimally designed experiment is performed. In this work, a Gaussian process is utilized in a two-fold manner: 1) to quantify the uncertainty realization of the physical system and calculate the plant-model mismatch, 2) to compute the optimal experimental design while accounting for the parametric uncertainty. This method provides a guarantee for the probabilistic satisfaction of the constraints in the context of model-based design of experiments. The method is assisted with the use of adaptive trust-regions in order to facilitate a satisfactory local approximation. The proposed method is able to allow the design of optimal experiments starting from limited preliminary knowledge of the parameter set, leading to a safe exploration of the parameter space. The performance of this method is demonstrated through illustrative case studies regarding the parameter identification of the kinetic model in flow reactors.