论文标题
混合电气调节器将硅光子插槽波导与高k射频插槽结合
Hybrid Electro-Optic Modulator Combining Silicon Photonic Slot Waveguides with High-k Radio-Frequency Slotlines
论文作者
论文摘要
电形(EO)调节器依赖于光学和电信号与二阶非线性介质的相互作用。对于光学信号,可以使用介电槽波导指导结构可以强烈增强这种相互作用,从而利用高索引波导核心和低索引EO覆层之间的接口处的场不连续性。与此相比,通常通过光波导的直接附近的导电区应用电信号。为避免过度的光损失,这些区域的电导率保持在中等水平,从而导致调制带宽的固有RC限制。在本文中,我们表明可以通过将插槽波导概念扩展到调节射频(RF)信号来克服这些局限性。我们的设备结合了一个RF插槽,该插槽依赖于Batio3作为具有常规硅光子插槽波导和高效的有机EO覆层材料的高K介电材料。在概念验证实验中,我们演示了1毫米长的Mach-Zehnder调制器,提供3 dB的宽度为76 GHz和6 dB频带110 GHz的6 dB宽度,而小的π速度为1.3 V(Uπl= 1.3 V mm)。据我们所知,这代表了迄今为止最大的EO带宽,该硅光子调制器基于介电波导。我们进一步证明了在数据传输实验中使用四态脉冲振幅调制(PAM4)的生存能力,最高为200 Gbit/s。我们的第一代设备为进一步的改进留出了广阔的空间,并可能为高效的硅光子调制器打开了有吸引力的途径,该硅光子调节器将低1 mm设备的长度与亚1 V驱动电压和调制带宽相结合,超过100 GHz。
Electro-optic (EO) modulators rely on interaction of optical and electrical signals with second-order nonlinear media. For the optical signal, this interaction can be strongly enhanced by using dielectric slot-waveguide structures that exploit a field discontinuity at the interface between a high-index waveguide core and the low-index EO cladding. In contrast to this, the electrical signal is usually applied through conductive regions in the direct vicinity of the optical waveguide. To avoid excessive optical loss, the conductivity of these regions is maintained at a moderate level, thus leading to inherent RC-limitations of the modulation bandwidth. In this paper, we show that these limitations can be overcome by extending the slot-waveguide concept to the modulating radio-frequency (RF) signal. Our device combines an RF slotline that relies on BaTiO3 as a high-k dielectric material with a conventional silicon photonic slot waveguide and a highly efficient organic EO cladding material. In a proof-of-concept experiment, we demonstrate a 1 mm-long Mach-Zehnder modulator that offers a 3 dB-bandwidth of 76 GHz and a 6 dB-bandwidth of 110 GHz along with a small π-voltage of 1.3 V (UπL = 1.3 V mm). To the best of our knowledge, this represents the largest EO bandwidth so far achieved with a silicon photonic modulator based on dielectric waveguides. We further demonstrate the viability of the device in a data transmission experiment using four-state pulse-amplitude modulation (PAM4) at line rates up to 200 Gbit/s. Our first-generation devices leave vast room for further improvement and may open an attractive route towards highly efficient silicon photonic modulators that combine sub-1 mm device lengths with sub-1 V drive voltages and modulation bandwidths of more than 100 GHz.