论文标题

MixMix:无数据压缩所需的就是功能和数据混合

MixMix: All You Need for Data-Free Compression Are Feature and Data Mixing

论文作者

Li, Yuhang, Zhu, Feng, Gong, Ruihao, Shen, Mingzhu, Dong, Xin, Yu, Fengwei, Lu, Shaoqing, Gu, Shi

论文摘要

用户数据保密性保护正在成为当前深度学习研究中的一个挑战。没有访问数据,传统数据驱动的模型压缩面临较高的性能降解风险。最近,一些作品建议从特定审计模型中生成图像,以充当培训数据。但是,反演过程仅利用一个模型中存储的偏置特征统计,并且从低维度到高维度。结果,它不可避免地遇到了普遍性和不确定反转的困难,这会导致性能不令人满意。为了解决这些问题,我们根据两种简单但有效的技术提出了混合物:(1)特征混合:利用各种模型来构建通用的特征空间,以进行广义倒置; (2)数据混合:混合合成的图像和标签以生成精确的标签信息。我们从理论和经验的角度证明了混合物的有效性。广泛的实验表明,混合构成在主流压缩任务上的现有方法,包括量化,知识蒸馏和修剪。具体而言,与现有的无数据压缩工作相比,MixMix在量化和修剪方面的准确性高达4%和20%。

User data confidentiality protection is becoming a rising challenge in the present deep learning research. Without access to data, conventional data-driven model compression faces a higher risk of performance degradation. Recently, some works propose to generate images from a specific pretrained model to serve as training data. However, the inversion process only utilizes biased feature statistics stored in one model and is from low-dimension to high-dimension. As a consequence, it inevitably encounters the difficulties of generalizability and inexact inversion, which leads to unsatisfactory performance. To address these problems, we propose MixMix based on two simple yet effective techniques: (1) Feature Mixing: utilizes various models to construct a universal feature space for generalized inversion; (2) Data Mixing: mixes the synthesized images and labels to generate exact label information. We prove the effectiveness of MixMix from both theoretical and empirical perspectives. Extensive experiments show that MixMix outperforms existing methods on the mainstream compression tasks, including quantization, knowledge distillation, and pruning. Specifically, MixMix achieves up to 4% and 20% accuracy uplift on quantization and pruning, respectively, compared to existing data-free compression work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源