论文标题
使用L1-norm最小化(扩展版)将脚步计划作为可行性问题(扩展版)
Solving Footstep Planning as a Feasibility Problem using L1-norm Minimization (Extended Version)
论文作者
论文摘要
在不平坦的地形上腿部运动的一个挑战是处理每个脚步的接触表面的离散问题,也是将每个脚步放在选定的表面上的连续问题。因此,可以通过混合整数程序(MIP)来解决脚步计划,这是一种优雅但计算的方法,可以使其不适合在线计划。我们将MIP重新制定为基数问题,然后将其近似为计算有效的L1-norm最小化,称为SL1M。此外,我们通过将SL1M与基于抽样的根轨迹计划器结合起来,以降低无关的表面候选者来提高SL1M的性能和收敛性。在四种代表性的情况下,我们对人形talos的测试表明,SL1M的收敛速度总是比MIP快。对于组合复杂性小(每步<10个表面)时,SL1M收敛的速度至少是MIP的两倍,而无需修剪。在更复杂的情况下,借助修剪,SL1M收敛的速度比MIP快100倍。此外,修剪还可以改善MIP计算时间。框架的多功能性显示在四足机器人Anymal上的其他测试。
One challenge of legged locomotion on uneven terrains is to deal with both the discrete problem of selecting a contact surface for each footstep and the continuous problem of placing each footstep on the selected surface. Consequently, footstep planning can be addressed with a Mixed Integer Program (MIP), an elegant but computationally-demanding method, which can make it unsuitable for online planning. We reformulate the MIP into a cardinality problem, then approximate it as a computationally efficient l1-norm minimisation, called SL1M. Moreover, we improve the performance and convergence of SL1M by combining it with a sampling-based root trajectory planner to prune irrelevant surface candidates. Our tests on the humanoid Talos in four representative scenarios show that SL1M always converges faster than MIP. For scenarios when the combinatorial complexity is small (< 10 surfaces per step), SL1M converges at least two times faster than MIP with no need for pruning. In more complex cases, SL1M converges up to 100 times faster than MIP with the help of pruning. Moreover, pruning can also improve the MIP computation time. The versatility of the framework is shown with additional tests on the quadruped robot ANYmal.