论文标题
在全息QCD中的磁场和各向异性之间的相互作用上
On the interplay between magnetic field and anisotropy in holographic QCD
论文作者
论文摘要
我们通过仪表/重力对应关系研究了各向异性和磁场在强相互作用理论中的综合作用。我们的主要动机是在中央重型离子碰撞中产生的夸克 - 胶原等离子体,该血浆在压力梯度以及大型外部磁场中表现出大型各向异性。我们探索两种不同的配置,各向异性要么平行或垂直于磁场,重点是两者之间的竞争和相互作用。对基态RG流量的详细研究揭示了一个丰富的结构,其中取决于两个(各向异性或磁场)中的哪个,更强,中等几何形状,具有近似ADS $ _4 \ times $ _4 \ times \ Mathbb {r} $和ADS $ _3 \ times $ _3 \ times \ times \ Mathbb {r}^r}^2 $ coses arise arise arise arise arise arise arise arise。该竞争也表现在有限温度下的相结构中,特别是手性转变温度对各向异性和磁场的依赖性,从中我们推断出手性凝管的逆磁和各向异性催化剂的存在。最后,我们考虑了该理论中的其他显着可观察物,包括夸克式的电位,剪切粘度,纠缠熵和蝴蝶速度。我们证明它们是该理论的良好探针,特别是区分了地面和血浆状态的磁场和各向异性的影响。我们还发现,蝴蝶速度将速度编码为等离子体中的信息传播的速度传播,它表现出丰富的结构,这是温度,各向异性和磁场的函数,超过了某些方案中的保形值。
We investigate the combined effects of anisotropy and a magnetic field in strongly interacting gauge theories by the gauge/gravity correspondence. Our main motivation is the quark-gluon plasma produced in off-central heavy-ion collisions which exhibits large anisotropy in pressure gradients as well as large external magnetic fields. We explore two different configurations, with the anisotropy either parallel or perpendicular to the magnetic field, focusing on the competition and interplay between the two. A detailed study of the RG flow in the ground state reveals a rich structure where depending on which of the two, anisotropy or magnetic field, is stronger, intermediate geometries with approximate AdS$_4\times \mathbb{R}$ and AdS$_3\times \mathbb{R}^2$ factors arise. This competition is also manifest in the phase structure at finite temperature, specifically in the dependence of the chiral transition temperature on anisotropy and magnetic field, from which we infer the presence of inverse magnetic and anisotropic catalyses of the chiral condensate. Finally, we consider other salient observables in the theory, including the quark-antiquark potential, shear viscosity, entanglement entropy and the butterfly velocity. We demonstrate that they serve as good probes of the theory, in particular, distinguishing between the effects of the magnetic field and anisotropy in the ground and plasma states. We also find that the butterfly velocity, which codifies how fast information propagates in the plasma, exhibits a rich structure as a function of temperature, anisotropy and magnetic field, exceeding the conformal value in certain regimes.