论文标题

Eierlegende-Wollmilchsau的概括

Generalizations of the Eierlegende-Wollmilchsau

论文作者

Apisa, Paul, Wright, Alex

论文摘要

我们对GL(2,r)invariant subvarieties的自然集合进行了分类,其中包括双层盖的基因座,Eierlegende-Wollmilchsau的轨道,Ornithorynque以及Matheus-Yoccoz表面,以及在Teichmpace的复杂几何形状的研究中自然而然地出现。该分类是作者随后的工作中的关键输入,该作者对“高级”不变子变量进行了分类,并且在第一作者的后续工作中,将某些不变的子变量分类为“ Lyapunov Spectrum spectrum sectraptrum nibil nime”。我们还将应用程序推导到Teichmuller空间的复杂几何形状并构建新的示例,这些示例对Mirzakhani和Wright的两个问题负面问题,并说明了有限阻止问题的先前未观察到的现象。

We classify a natural collection of GL(2,R)-invariant subvarieties, which includes loci of double covers, the orbits of the Eierlegende-Wollmilchsau, Ornithorynque, and Matheus-Yoccoz surfaces, and loci appearing naturally in the study of the complex geometry of Teichmuller space. This classification is the key input in subsequent work of the authors that classifies "high rank" invariant subvarieties, and in subsequent work of the first author that classifies certain invariant subvarieties with "Lyapunov spectrum as degenerate as possible". We also derive applications to the complex geometry of Teichmuller space and construct new examples, which negatively resolve two questions of Mirzakhani and Wright and illustrate previously unobserved phenomena for the finite blocking problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源