论文标题

使用深Q学习的自适应竞争窗口设计

Adaptive Contention Window Design using Deep Q-learning

论文作者

Kumar, Abhishek, Verma, Gunjan, Rao, Chirag, Swami, Ananthram, Segarra, Santiago

论文摘要

我们研究了随机访问无线网络的自适应竞争窗口(CW)设计的问题。更确切地说,我们的目标是设计一个可以动态调整其最小CW(MCW)参数的智能节点,以最大程度地提高网络级别的实用程序,而不是知道其他节点的MCW或随着时间的推移如何变化。为了实现这一目标,我们采用了强化学习(RL)框架,在该框架中,我们可以通过本地渠道观察来规避系统知识,并奖励导致高公用事业的行动。为了有效地学习这些首选动作,我们遵循一种深度Q学习方法,其中Q值函数使用多层感知进行参数化。特别是,我们实施了彩虹剂,该彩虹剂对基本深Q网络进行了几种经验改进。基于NS3模拟器的数值实验表明,所提出的RL代理在现有的学习和非学习替代方案上的表现接近最佳,并显着改善。

We study the problem of adaptive contention window (CW) design for random-access wireless networks. More precisely, our goal is to design an intelligent node that can dynamically adapt its minimum CW (MCW) parameter to maximize a network-level utility knowing neither the MCWs of other nodes nor how these change over time. To achieve this goal, we adopt a reinforcement learning (RL) framework where we circumvent the lack of system knowledge with local channel observations and we reward actions that lead to high utilities. To efficiently learn these preferred actions, we follow a deep Q-learning approach, where the Q-value function is parametrized using a multi-layer perception. In particular, we implement a rainbow agent, which incorporates several empirical improvements over the basic deep Q-network. Numerical experiments based on the NS3 simulator reveal that the proposed RL agent performs close to optimal and markedly improves upon existing learning and non-learning based alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源