论文标题

序列数据分析业务流程的视觉漂移检测

Visual Drift Detection for Sequence Data Analysis of Business Processes

论文作者

Yeshchenko, Anton, Di Ciccio, Claudio, Mendling, Jan, Polyvyanyy, Artem

论文摘要

事件序列数据越来越多地在各种应用程序域中获得,例如业务流程管理,软件工程或医疗路径。这些域中的过程通常表示为过程图或流程图。到目前为止,已经开发了各种技术来自动从事件序列数据生成此类图。一个开放的挑战是当过程随时间变化时对漂移现象的视觉分析。在本文中,我们解决了这一研究差距。我们的贡献是一个用于细胞流程漂移检测的系统,以及用于执行业务流程事件日志的相应可视化。我们在合成和现实世界数据上评估了系统。在合成日志上,我们达到了0.96的平均F评分,并且表现优于所有最新方法。在实际日志上,我们以全面的方式确定了所有类型的过程漂移。最后,我们进行了一项用户研究,强调了我们的可视化易于使用,并且可以按照过程采矿专家的理解。这样,我们的工作有助于研究过程挖掘,事件序列分析和时间数据的可视化。

Event sequence data is increasingly available in various application domains, such as business process management, software engineering, or medical pathways. Processes in these domains are typically represented as process diagrams or flow charts. So far, various techniques have been developed for automatically generating such diagrams from event sequence data. An open challenge is the visual analysis of drift phenomena when processes change over time. In this paper, we address this research gap. Our contribution is a system for fine-granular process drift detection and corresponding visualizations for event logs of executed business processes. We evaluated our system both on synthetic and real-world data. On synthetic logs, we achieved an average F-score of 0.96 and outperformed all the state-of-the-art methods. On real-world logs, we identified all types of process drifts in a comprehensive manner. Finally, we conducted a user study highlighting that our visualizations are easy to use and useful as perceived by process mining experts. In this way, our work contributes to research on process mining, event sequence analysis, and visualization of temporal data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源