论文标题
Orbifold剪接商和表面对的日志盖
Orbifold splice quotients and log covers of surface pairs
论文作者
论文摘要
一个三维的Orbifold $(σ,γ_i,n_i)$,其中$σ$是一个理性同源性领域,具有通用的Abelian Orbifold覆盖物,其覆盖群是第一个Orbifold同源性。一个奇异的对$(x,c)$,其中$ x $是普通的表面奇异性,$ \ mathbb q $ hs链接,$ c $是一个weil divisor,它的边界升至orbifold。一个人在代数几何设置中研究了前面的Orbifold概念,特别是定义了一对的通用Abelian日志盖。第一个键定理从配对的适当分辨率计算Orbifold同源性。类似于$ c $是空的,并且在分辨率图上的某些条件下,可以构建对及其通用的Abelian日志覆盖物的情况。这样的对称为Orbifold剪接商。
A three-dimensional orbifold $(Σ, γ_i, n_i)$, where $Σ$ is a rational homology sphere, has a universal abelian orbifold covering, whose covering group is the first orbifold homology. A singular pair $(X,C)$, where $X$ is a normal surface singularity with $\mathbb Q$HS link and $C$ is a Weil divisor, gives rise on its boundary to an orbifold. One studies the preceding orbifold notions in the algebro-geometric setting, in particular defining the universal abelian log cover of a pair. A first key theorem computes the orbifold homology from an appropriate resolution of the pair. In analogy with the case where $C$ is empty and one considers the universal abelian cover, under certain conditions on a resolution graph one can construct pairs and their universal abelian log covers. Such pairs are called orbifold splice quotients.