论文标题
基于大数据和机器学习方法,中国每日地面NO2浓度的估算值
Estimates of daily ground-level NO2 concentrations in China based on big data and machine learning approaches
论文作者
论文摘要
二氧化氮(NO2)是最重要的大气污染物之一。但是,由于源数据的质量差和模型的计算能力,当前的地面NO2浓度数据缺乏高分辨率覆盖范围或全国全国范围。据我们所知,这项研究是第一个在过去6年(2013-2018)(2013-2018)中估算国家覆盖范围以及相对较高的时空分辨率(0.25度;每日间隔)的第一个估计中国NO2浓度。我们提出了一个随机森林模型集成K-均值(RF-K),以使用多源参数进行估计。除了气象参数外,卫星检索参数,我们还首次引入社会经济参数来评估人类活动的影响。结果表明:(1)我们开发的RF-K模型比其他模型显示出更好的预测性能,而交叉验证R2 = 0.64(MAPE = 34.78%)。 (2)中国NO2的年平均浓度表现出较弱的趋势。在北京-Tianjin-Hebei地区,扬兹河三角洲和珍珠河三角洲等经济区域中,那里的NO2集中度甚至降低或保持不变,尤其是在春季。我们的数据集已证实在这些领域已经实现了控制目标。随着绘制每日全国地面NO2浓度的映射,本研究提供了及时的数据,可为中国空气质量管理高质量。我们提供了一个通用模型框架,以基于改进的机器学习方法,快速生成具有高时空分辨率的及时国家大气污染物浓度图。
Nitrogen dioxide (NO2) is one of the most important atmospheric pollutants. However, current ground-level NO2 concentration data are lack of either high-resolution coverage or full coverage national wide, due to the poor quality of source data and the computing power of the models. To our knowledge, this study is the first to estimate the ground-level NO2 concentration in China with national coverage as well as relatively high spatiotemporal resolution (0.25 degree; daily intervals) over the newest past 6 years (2013-2018). We advanced a Random Forest model integrated K-means (RF-K) for the estimates with multi-source parameters. Besides meteorological parameters, satellite retrievals parameters, we also, for the first time, introduce socio-economic parameters to assess the impact by human activities. The results show that: (1) the RF-K model we developed shows better prediction performance than other models, with cross-validation R2 = 0.64 (MAPE = 34.78%). (2) The annual average concentration of NO2 in China showed a weak increasing trend . While in the economic zones such as Beijing-Tianjin-Hebei region, Yangtze River Delta, and Pearl River Delta, the NO2 concentration there even decreased or remained unchanged, especially in spring. Our dataset has verified that pollutant controlling targets have been achieved in these areas. With mapping daily nationwide ground-level NO2 concentrations, this study provides timely data with high quality for air quality management for China. We provide a universal model framework to quickly generate a timely national atmospheric pollutants concentration map with a high spatial-temporal resolution, based on improved machine learning methods.