论文标题

有限抽样的近乎最佳的多机器人运动计划

Near-Optimal Multi-Robot Motion Planning with Finite Sampling

论文作者

Dayan, Dror, Solovey, Kiril, Pavone, Marco, Halperin, Dan

论文摘要

连续多机器人运动计划(MRMP)的几种基于抽样的方法中的一个基本结构是张量路线图(TR),它来自通过张量产品组合为单个机器人构建的多个PRM图。我们研究了TR对MRMP编码近乎最佳解决方案的条件 - 满足这些条件意味着对于包括DRRT*在内的各种流行计划者,以及应用于连续域时的离散方法M*和CBS几乎是最佳性。我们开发了此类的第一个有限样本分析,该分析指定了每个单独的PRM图应使用的样本数量,确定性分布和连接半径的大小,以确保使用TR进行近距离观看。这在先前的渐近分析中显着改善,其中样品的数量趋于无穷大。我们新的有限样本尺寸分析支持在有限的时间内保证实践中的高质量解决方案。为了实现新的结果,我们首先制定了一种抽样方案,我们称之为交错的网格,用于单个机器人的有限样本运动计划,该计划的样本需要大得多。然后,我们将其扩展到更多涉及的MRMP设置,该设置需要考虑多个机器人之间的交互。最后,我们报告了一些实验,这些实验是对我们的理论发现的验证,并提出了有趣的问题以进行进一步研究。

An underlying structure in several sampling-based methods for continuous multi-robot motion planning (MRMP) is the tensor roadmap (TR), which emerges from combining multiple PRM graphs constructed for the individual robots via a tensor product. We study the conditions under which the TR encodes a near-optimal solution for MRMP -- satisfying these conditions implies near optimality for a variety of popular planners, including dRRT*, and the discrete methods M* and CBS when applied to the continuous domain. We develop the first finite-sample analysis of this kind, which specifies the number of samples, their deterministic distribution, and magnitude of the connection radii that should be used by each individual PRM graph, to guarantee near-optimality using the TR. This significantly improves upon a previous asymptotic analysis, wherein the number of samples tends to infinity. Our new finite sample-size analysis supports guaranteed high-quality solutions in practice within finite time. To achieve our new result, we first develop a sampling scheme, which we call the staggered grid, for finite-sample motion planning for individual robots, which requires significantly fewer samples than previous work. We then extend it to the much more involved MRMP setting which requires to account for interactions among multiple robots. Finally, we report on a few experiments that serve as a verification of our theoretical findings and raise interesting questions for further investigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源