论文标题

张量kronecker产品的主要Z-eigenpair被脱钩,并应用于高阶图匹配

Dominant Z-Eigenpairs of Tensor Kronecker Products are Decoupled and Applications to Higher-Order Graph Matching

论文作者

Colley, Charles, Nassar, Huda, Gleich, David

论文摘要

Kronecker产品的自然概括是Kronecker产品的张量Kronecker产品,在多个研究社区中独立出现。像它们的矩阵对应物一样,张量的概括为隐式乘法和分解定理提供了结构。我们提出了一个定理,该定理将张量kronecker产品的主要特征向量分解,这是从矩阵理论到张量特征向量的罕见概括。该定理意味着在kronecker产品的张量功率方法的迭代中应该存在低级结构。我们研究了网络对齐算法TAME中的低等级结构,这是一种功率方法启发式方法。直接或通过新的启发式嵌入方法使用低级结构,我们会生成新的算法,这些算法在提高或保持准确性的同时更快,并扩展到无法实际处理现有技术的问题。

Tensor Kronecker products, the natural generalization of the matrix Kronecker product, are independently emerging in multiple research communities. Like their matrix counterpart, the tensor generalization gives structure for implicit multiplication and factorization theorems. We present a theorem that decouples the dominant eigenvectors of tensor Kronecker products, which is a rare generalization from matrix theory to tensor eigenvectors. This theorem implies low rank structure ought to be present in the iterates of tensor power methods on Kronecker products. We investigate low rank structure in the network alignment algorithm TAME, a power method heuristic. Using the low rank structure directly or via a new heuristic embedding approach, we produce new algorithms which are faster while improving or maintaining accuracy, and scale to problems that cannot be realistically handled with existing techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源