论文标题

双汉顿浅水系统的持久性特性的几何演示

Geometrical demonstration for persistence properties for a bi-Hamiltonian shallow water system

论文作者

Freire, Igor Leite

论文摘要

我们为在浅水状态下建模波的持久性特性提供了几何示范。考虑到周期性和非周期性案例,我们的方法中的关键要素是系统的哈密顿人之一。由于我们的发展,我们改善了针对浅水方程式独特的延续性能的最新作品,并且我们提供了一种新颖的方式来证明系统的独特紧凑型解决方案必然是零函数。

We present a geometrical demonstration for persistence properties for a bi-Hamiltonian system modelling waves in a shallow water regime. Both periodic and non-periodic cases are considered and a key ingredient in our approach is one of the Hamiltonians of the system. As a consequence of our developments we improve recent works dealing with unique continuation properties for shallow water equations, as well as we provide a novel way to prove that the unique compactly supported solution of the system is necessarily the zero function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源