论文标题

探索AI硬件中的能量准确性权衡

Exploring Energy-Accuracy Tradeoffs in AI Hardware

论文作者

Merkel, Cory

论文摘要

人工智能(AI)在我们的日常生活中起着越来越重要的作用。预计这种趋势将继续下去,尤其是最近推动将更多AI提升到优势的趋势。但是,与AI上的AI相关的最大挑战之一(手机,无人驾驶车辆,传感器等)是其相关的尺寸,重量和功率限制。在这项工作中,我们考虑了AI系统可能需要以最小的精度运行才能满足应用程序依赖于应用程序的能源需求的情况。我们提出了一个简单的功能,将使用AI系统的成本分为决策过程的成本和决策执行成本。对于卷积神经网络的简单二进制决策问题,这表明将成本最小化对应于使用少于最大资源数量(例如卷积神经网络层和过滤器)。最后,结果表明,通过利用网络较低层中的高信心预测,可以显着降低与能源相关的成本。

Artificial intelligence (AI) is playing an increasingly significant role in our everyday lives. This trend is expected to continue, especially with recent pushes to move more AI to the edge. However, one of the biggest challenges associated with AI on edge devices (mobile phones, unmanned vehicles, sensors, etc.) is their associated size, weight, and power constraints. In this work, we consider the scenario where an AI system may need to operate at less-than-maximum accuracy in order to meet application-dependent energy requirements. We propose a simple function that divides the cost of using an AI system into the cost of the decision making process and the cost of decision execution. For simple binary decision problems with convolutional neural networks, it is shown that minimizing the cost corresponds to using fewer than the maximum number of resources (e.g. convolutional neural network layers and filters). Finally, it is shown that the cost associated with energy can be significantly reduced by leveraging high-confidence predictions made in lower-level layers of the network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源