论文标题

为消耗品创建受众 - 简单可扩展的精确销售,用于不断增长的市场

Audience Creation for Consumables -- Simple and Scalable Precision Merchandising for a Growing Marketplace

论文作者

S, Shreyas, Maheshwari, Harsh, Saha, Avijit, Datta, Samik, Jain, Shashank, Makhija, Disha, Nagpal, Anuj, Shukla, Sneha, S, Suyash

论文摘要

诸如杂货店和快速移动的消费品之类的消耗类别对发展中国家电子商务市场的增长至关重要。在这项工作中,我们介绍了精确的商品销售系统的设计和实施,该系统创建了来自1000万消费者的受众,并部署在印度最大的在线杂货店之一的Flipkart Supermart。我们采用时间点过程来对消耗品的购买动态中的潜在周期性和相互兴趣进行建模。此外,我们开发了一种无似然估计程序,该程序可抵抗不断增长的市场的典型数据稀疏性,谴责和噪音。最后,我们通过量化触发内核并利用在商业分布式线性代数后端可用的稀疏矩阵 - 矢量乘法原则来扩展推断。在一年多的运营中,我们目睹了店面基于横幅的商品销售的点击率在25-70%的范围内持续提高,而基于推动通知的广告系列的范围为12-26%。

Consumable categories, such as grocery and fast-moving consumer goods, are quintessential to the growth of e-commerce marketplaces in developing countries. In this work, we present the design and implementation of a precision merchandising system, which creates audience sets from over 10 million consumers and is deployed at Flipkart Supermart, one of the largest online grocery stores in India. We employ temporal point process to model the latent periodicity and mutual-excitation in the purchase dynamics of consumables. Further, we develop a likelihood-free estimation procedure that is robust against data sparsity, censure and noise typical of a growing marketplace. Lastly, we scale the inference by quantizing the triggering kernels and exploiting sparse matrix-vector multiplication primitive available on a commercial distributed linear algebra backend. In operation spanning more than a year, we have witnessed a consistent increase in click-through rate in the range of 25-70% for banner-based merchandising in the storefront, and in the range of 12-26% for push notification-based campaigns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源