论文标题

增强非对称$ k-$ hessian类型方程的可接受解决方案I

Admissible solutions to augmented nonsymmetric $k-$Hessian type equations I. The $d-$concavity of the $k-$Hessian type functions

论文作者

Van, Bang Tran, Tien, Ngoan Ha, Huu, Tho Nguyen, Trong, Tien Phan

论文摘要

我们以$ 2 \ le k \ le n-1 $建立功能的严格凹度$ f_k(λ)= \ log(σ_k(λ))$在正锥$umγ_n= \ {λ_=(λ_{1},λ_{2},λ_{2},\ cdots,λ_} n pastem的子集上λ_j> 0,j = 1,\ cdots,n \} $其中$σ_{k}(λ)$是度$ k的基本对称的多项式,$ 2 \ $ 2 \ leq k \ leqn。$,然后我们将结果应用结果来研究所谓的$ k- $ d- $ k- $ k- $ k- $ b-og $ k-$ $ hess类型$ f _} \左(s_ {k}(r)\右),$其中$ s_ {k}(r)=σ_{k}(λ(r)),λ(r)= \ left(λ_{1},λ__{1},λ__{2},\ cdots,\ cdots,cdots,λ__{n} \ right) $ r \ in \ mathbb {r}^{n \ times n}的特征值 - 向量,$ $ r =ω+β,ω+β,ω^{t} =ω> 0,\quadβ^{tβ^{t} = - t} = - β。非对称$ k-$ hessian类型方程。

We establish for $2 \le k \le n-1$ the strict concavity of the function $f_k(λ)=\log(σ_k(λ))$ on a subset of the positive cone $Γ_n=\{λ=(λ_{1}, λ_{2}, \cdots,λ_{n})\in \mathbb{R}^n; λ_j>0,j=1,\cdots, n\}$ where $σ_{k}(λ)$ is the basic symmetric polynomial of degree $k,$ $2 \leq k \leq n.$ Then we apply the result to study the so-called $d-$concavity of the $k-$Hessian type function $F_{k}(R)=\log \left(S_{k}(R)\right),$ where $S_{k}(R)=σ_{k}(λ(R)), λ(R)= \left(λ_{1}, λ_{2}, \cdots, λ_{n}\right) \in \mathbb{C}^{n}$ is eigenvalue-vector of $R \in \mathbb{R}^{n \times n},$ $R=ω+β, ω^{T}=ω, ω>0, \quad β^{T}=-β.$ The $d-$concavity will be used in our next paper to study the existence of admissible solutions to the Dirichlet problem for the augmented nonsymmetric $k-$Hessian type equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源