论文标题

用大智能表面评估无线传感潜力

Assessing Wireless Sensing Potential with Large Intelligent Surfaces

论文作者

Vaca-Rubio, Cristian J., Ramirez-Espinosa, Pablo, Kansanen, Kimmo, Tan, Zheng-Hua, de Carvalho, Elisabeth, Popovski, Petar

论文摘要

传感功能是未来6G无线网络的最突出的新功能之一。本文介绍了在示例性行业4.0方案中大型智能表面(LIS)的感应潜力。除了LI在交流方面受到的关注之外,它还可以为传播环境提供高分辨率的渲染。这是因为,在室内环境中,可以将其放置在接近感知现象的地方,而高分辨率是由部署在大面积上的密集间隔的微小天线提供的。通过将LIS视为依靠接收的信号功率的环境的无线电图像,我们通过利用图像处理和机器学习工具来开发以感知环境的技术。一旦获得了全息图像,就可以使用Denoising AutoCododer(DAE)网络来构建超分辨率图像,从而导致传统传感系统中无法获得感应优势。另外,我们根据广义似然比(GLRT)作为机器学习解决方案的基准得出统计检验。我们测试这些方法是否需要检测工业机器人是否偏离预定义路线的情况。结果表明,基于LIS的传感具有很高的精度,并且在室内工业环境中具有很高的应用潜力。

Sensing capability is one of the most highlighted new feature of future 6G wireless networks. This paper addresses the sensing potential of Large Intelligent Surfaces (LIS) in an exemplary Industry 4.0 scenario. Besides the attention received by LIS in terms of communication aspects, it can offer a high-resolution rendering of the propagation environment. This is because, in an indoor setting, it can be placed in proximity to the sensed phenomena, while the high resolution is offered by densely spaced tiny antennas deployed over a large area. By treating an LIS as a radio image of the environment relying on the received signal power, we develop techniques to sense the environment, by leveraging the tools of image processing and machine learning. Once a holographic image is obtained, a Denoising Autoencoder (DAE) network can be used for constructing a super-resolution image leading to sensing advantages not available in traditional sensing systems. Also, we derive a statistical test based on the Generalized Likelihood Ratio (GLRT) as a benchmark for the machine learning solution. We test these methods for a scenario where we need to detect whether an industrial robot deviates from a predefined route. The results show that the LIS-based sensing offers high precision and has a high application potential in indoor industrial environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源