论文标题

量化基于深度学习的图像重建中不确定性的来源

Quantifying Sources of Uncertainty in Deep Learning-Based Image Reconstruction

论文作者

Barbano, Riccardo, Kereta, Željko, Zhang, Chen, Hauptmann, Andreas, Arridge, Simon, Jin, Bangti

论文摘要

基于深神经网络的图像重建方法显示出出色的性能,等于或超过常规方法的最新结果,但通常不提供有关重建的不确定性信息。在这项工作中,我们提出了一个可扩展有效的框架,以同时量化学习的迭代图像重建中的息肉和认知不确定性。我们基于贝叶斯深梯度下降方法来量化认知不确定性,并结合了噪声的异质差异,以说明不确定性。我们表明,我们的方法针对传统基准的计算机断层扫描具有稀疏视图和有限角度数据的计算机断层扫描。估计的不确定性捕获了由于有限的角度几何形状而导致的限制测量模型以及缺少信息引起的重建的可变性。

Image reconstruction methods based on deep neural networks have shown outstanding performance, equalling or exceeding the state-of-the-art results of conventional approaches, but often do not provide uncertainty information about the reconstruction. In this work we propose a scalable and efficient framework to simultaneously quantify aleatoric and epistemic uncertainties in learned iterative image reconstruction. We build on a Bayesian deep gradient descent method for quantifying epistemic uncertainty, and incorporate the heteroscedastic variance of the noise to account for the aleatoric uncertainty. We show that our method exhibits competitive performance against conventional benchmarks for computed tomography with both sparse view and limited angle data. The estimated uncertainty captures the variability in the reconstructions, caused by the restricted measurement model, and by missing information, due to the limited angle geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源