论文标题
用于机器人魔术贴剥离的多步重复学习
Multi-Step Recurrent Q-Learning for Robotic Velcro Peeling
论文作者
论文摘要
学习对象操纵是机器人与环境互动的关键技能。尽管机器人对刚性物体的操作取得了重大进展,但与非刚性物体的相互作用对于机器人而言仍然具有挑战性。在这项工作中,我们将魔术贴剥离引入了对复杂环境中非刚性对象的机器人操纵的代表性应用。我们提出了一种通过通过多步深度复发网络对测量之间的长期依赖性进行建模,从而从嘈杂和不完整的传感器输入中基于学习力的操纵方法。我们在真实机器人上进行了实验,以表明对这些长期依赖性建模并验证我们在模拟和机器人实验中的方法。我们的结果表明,使用触觉输入使机器人能够克服在所有情况下约90%的富裕度中存在的几何不确定性,从而超过了基线的大幅度。
Learning object manipulation is a critical skill for robots to interact with their environment. Even though there has been significant progress in robotic manipulation of rigid objects, interacting with non-rigid objects remains challenging for robots. In this work, we introduce velcro peeling as a representative application for robotic manipulation of non-rigid objects in complex environments. We present a method of learning force-based manipulation from noisy and incomplete sensor inputs in partially observable environments by modeling long term dependencies between measurements with a multi-step deep recurrent network. We present experiments on a real robot to show the necessity of modeling these long term dependencies and validate our approach in simulation and robot experiments. Our results show that using tactile input enables the robot to overcome geometric uncertainties present in the environment with high fidelity in ~90% of all cases, outperforming the baselines by a large margin.