论文标题

$ d $ d $ dimensional $ c^{2,α} $的预期签名,以$ d $ d $ -d $ -d $ c^{2,α} $ - 域在任何地方都有有限的收敛半径:$ 2 \ leq d \ leq 8 $

Expected signature of stopped Brownian motion on $d$-dimensional $C^{2, α}$-domains has finite radius of convergence everywhere: $2\leq d \leq 8$

论文作者

Li, Siran, Ni, Hao

论文摘要

粗糙路径理论中的一个基本问题是,几何粗糙路径的预期特征是否完全决定了签名定律。一个足够的条件是预期的签名具有无限的收敛半径,这在固定时间间隔(包括布朗运动)上通过各种随机过程满足。相比之下,对于布朗尼的首次退出时间从有限的域$ω$停止了,只有知道在足够常规的$ω$上的预期签名半径的融合半径无处不在,并且当$ 2 $ - 2 $ dimemensional nimel dist dist $ω$时,收敛半径是有限的([1])。 在本文中,我们证明,在任何有限的$ c^{2,α} $ - 域$ω\ subset \ subset \ mathbb {r}^d $带有$ 2 \ leq d \ leq 8 $的$ 2 \ leq 8 $中,停止的布朗尼运动的预期标志是无处不在的有限radius。我们证明的关键要素是引入“域平均双曲线开发”(请参阅​​定义4.1),这使我们能够通过平均旋转域的平均pde系统来对称PDE系统,以实现预期签名的双曲线开发。

A fundamental question in rough path theory is whether the expected signature of a geometric rough path completely determines the law of signature. One sufficient condition is that the expected signature has infinite radius of convergence, which is satisfied by various stochastic processes on a fixed time interval, including the Brownian motion. In contrast, for the Brownian motion stopped upon the first exit time from a bounded domain $Ω$, it is only known that the radius of convergence for the expected signature on sufficiently regular $Ω$ is strictly positive everywhere, and that the radius of convergence is finite at some point when $Ω$ is the $2$-dimensional unit disc ([1]). In this paper, we prove that on any bounded $C^{2,α}$-domain $Ω\subset \mathbb{R}^d$ with $2\leq d \leq 8$, the expected signature of the stopped Brownian motion has finite radius of convergence everywhere. A key ingredient of our proof is the introduction of a "domain-averaging hyperbolic development" (see Definition 4.1), which allows us to symmetrize the PDE system for the hyperbolic development of expected signature by averaging over rotated domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源