论文标题
旋转纠缠和磁性竞争通过旋转量子光学晶格中的远程相互作用
Spin Entanglement and Magnetic Competition via Long-range Interactions in Spinor Quantum Optical Lattices
论文作者
论文摘要
超低温度下的量子物质提供了一个测试床,用于分析和控制强相关系统中所需的特性。在典型条件下,原子的性质固定了系统的磁特征。除了导致光学晶格和短距离相互作用的经典光电位外,高Q型通过光的量子性将新型动力学引入系统。在这里,我们提出了一个理论模型,并使用精确的对角线化和密度矩阵重新归一化组模拟对其进行了分析。我们探讨了超电池中腔体介导的远距离磁相互作用和光学晶格的影响。我们发现,全球相互作用在引入竞争方案的同时改变了系统的基本磁特征。抗磁相关的骨质物质出现在超出性质通常提供的条件之外。这些允许新的替代方案用于设计可靠机制以实现量子信息目的,从而利用了强相关的量子物质的磁相的性质。
Quantum matter at ultra-low temperatures offers a testbed for analyzing and controlling desired properties in strongly correlated systems. Under typical conditions the nature of the atoms fixes the magnetic character of the system. Beyond classical light potentials leading to optical lattices and short range interactions, high-Q cavities introduce novel dynamics into the system via the quantumness of light. Here we propose a theoretical model and we analyze it using exact diagonalization and density matrix renormalization group simulations. We explore the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter. We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios. Antiferromagnetic correlated bosonic matter emerges in conditions beyond to what nature typically provides. These allow new alternatives toward the design of robust mechanisms for quantum information purposes, exploiting the properties of magnetic phases of strongly correlated quantum matter.