论文标题
迈向医学成像中的可训练显着图
Towards Trainable Saliency Maps in Medical Imaging
论文作者
论文摘要
虽然自动诊断中深度学习(DL)的成功可能是对药用实践的转变,尤其是对于几乎没有医生访问的人而言,其广泛的可接受性受到固有的黑盒决策和不安全失败模式的广泛限制。尽管显着性方法试图在非医学环境中解决这个问题,但它们的APRIORI解释并不能很好地转移到医疗用途。通过这项研究,我们验证了建筑复杂性和模型任务的模型设计元素不可知论,并展示引入此元素如何提供固有的自我解释模型。我们将结果与RSNA肺炎数据集的最佳显着性图进行了比较,并使用我们的采用技术证明了更高的定位功效。我们还比较了完全监督的基线,并为其高数据标签开销提供了合理的替代方法。我们通过定性评估专家读者的定性评估进一步研究了我们的主张的有效性。
While success of Deep Learning (DL) in automated diagnosis can be transformative to the medicinal practice especially for people with little or no access to doctors, its widespread acceptability is severely limited by inherent black-box decision making and unsafe failure modes. While saliency methods attempt to tackle this problem in non-medical contexts, their apriori explanations do not transfer well to medical usecases. With this study we validate a model design element agnostic to both architecture complexity and model task, and show how introducing this element gives an inherently self-explanatory model. We compare our results with state of the art non-trainable saliency maps on RSNA Pneumonia Dataset and demonstrate a much higher localization efficacy using our adopted technique. We also compare, with a fully supervised baseline and provide a reasonable alternative to it's high data labelling overhead. We further investigate the validity of our claims through qualitative evaluation from an expert reader.