论文标题

一个新的顶点着色启发式和相应的色数

A new vertex coloring heuristic and corresponding chromatic number

论文作者

Zaker, Manouchehr

论文摘要

使用合理数量的颜色获得适当的图形着色的一种方法是从任何任意的适当着色开始,然后重复一些本地重新色彩技术以减少颜色类的数量。图形的Grundy(首先)着色和颜色为颜色是两种众所周知的此类技术。颜色为{\ rm b} - 色也被称为颜色。但是这两个主题已经在图理论中分别研究了。我们介绍了一种新的着色程序,该过程结合了这两种技术的策略并满足了额外的属性。我们首先证明,每个图$ g $的顶点都可以使用颜色类别有效地涂色,例如$ c_1,\ ldots,c_k $,以使任何两种颜色$ i $ and $ j $的$(i)$带有$ 1 \ leq i <leq i <j \ j \ leq k $ \ ldots,u_k \} $ g $的顶点的$,以至于任何$ j \ in \ j \ in \ {1,\ ldots,\ ldots,k \} $和$ u_k $与$ u_j $相邻,每个$ 1 \ leq j \ j $ j $ j $ j $ j $ j $和$ i \ not = j $,顶点$ u_j $在$ c_i $中具有邻居。这提供了一种新的顶点着色启发式,可改善Grundy和颜色为颜色。用$ z(g)$表示任何适当的顶点着色中使用的最大颜色数,满足上述属性。 $ z(g)$量化了启发式术的最坏情况。我们证明了$ \ {g_n \} _ {n \ geq 1} $的存在,使得$ \ min \ {γ(g_n),b(g_n)\} \ rightArrow \ rightarrow \ infty $ but $ z(g_n)\ leq 3 $ for $ n $ n $ n $。对于每个积极整数$ t $,我们建立了一个有限的许多彩色图形的家庭,$ {\ Mathcal {d}} _ t $满足属性,如果$ z(g)\ geq t $对于图$ g $ t,则$ g $包含$ {\ nathcal {d}} _ t $ as a a from a a i a f in a y Mathcal {d} _ t $ as a a a coloplaph的元素。这提供了一种算法方法,用于证明$ z(g)$的数字上限。

One method to obtain a proper vertex coloring of graphs using a reasonable number of colors is to start from any arbitrary proper coloring and then repeat some local re-coloring techniques to reduce the number of color classes. The Grundy (First-Fit) coloring and color-dominating colorings of graphs are two well-known such techniques. The color-dominating colorings are also known and commonly referred as {\rm b}-colorings. But these two topics have been studied separately in graph theory. We introduce a new coloring procedure which combines the strategies of these two techniques and satisfies an additional property. We first prove that the vertices of every graph $G$ can be effectively colored using color classes say $C_1, \ldots, C_k$ such that $(i)$ for any two colors $i$ and $j$ with $1\leq i< j \leq k$, any vertex of color $j$ is adjacent to a vertex of color $i$, $(ii)$ there exists a set $\{u_1, \ldots, u_k\}$ of vertices of $G$ such that $u_j\in C_j$ for any $j\in \{1, \ldots, k\}$ and $u_k$ is adjacent to $u_j$ for each $1\leq j \leq k$ with $j\not= k$, and $(iii)$ for each $i$ and $j$ with $i\not= j$, the vertex $u_j$ has a neighbor in $C_i$. This provides a new vertex coloring heuristic which improves both Grundy and color-dominating colorings. Denote by $z(G)$ the maximum number of colors used in any proper vertex coloring satisfying the above properties. The $z(G)$ quantifies the worst-case behavior of the heuristic. We prove the existence of $\{G_n\}_{n\geq 1}$ such that $\min \{Γ(G_n), b(G_n)\} \rightarrow \infty$ but $z(G_n)\leq 3$ for each $n$. For each positive integer $t$ we construct a family of finitely many colored graphs ${\mathcal{D}}_t$ satisfying the property that if $z(G)\geq t$ for a graph $G$ then $G$ contains an element from ${\mathcal{D}}_t$ as a colored subgraph. This provides an algorithmic method for proving numeric upper bounds for $z(G)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源