论文标题
通过不拟合应变和表面电荷控制菱形PZT膜中的域状态
Control of domain states in rhombohedral PZT films via misfit strains and surface charges
论文作者
论文摘要
使用数值模型,使用Landau-Ginzburg-devonshire理论,在菱形甲型甲基甲酸二硝酸铁素盐酸铁酸铁甲酸铁/铁弹性薄膜中,与副词的含量较差的生产相关,通过数值模型,通过数值模型来研究了不拟合的应变和表面筛选电荷以及挠性效应的作用。已经确定,不拟合应变的大小和迹象会影响极化矢量的域结构和主要方向,从而提供了具有不同有利的极化成分的不拟合相位的相位。尽管足够强的压缩不合适应变有利于具有正晶的极化方向的相位,但强烈的拉伸失误仅产生平面内偏振组件。可以看到表面筛选的强度可以调节闭合结构结构的存在,并通过增加单域状态,取决于失配应力的值。与单域状态的相图相比,该挠性效应对多域状态的相位图具有较弱的影响。然而,在Skyrmion拓扑状态下,它的作用变得很重要,当应用压缩不合适的菌株时,在膜表面自发形成。失配菌株,表面筛选和温度的合作影响可以将薄菱形铁电膜设置为许多不同的极性和结构状态,从而在拓扑效果上发挥了柔性效应的作用。
Using the Landau-Ginzburg-Devonshire theory, an influence of the misfit strain and surface screening charges, as well as the role of the flexoelectric effect, have been studied by numerical modelling in the case of a rhombohedral lead zirconate-titanate ferroelectric/ferroelastic thin film with an anisotropic misfit produced by a substrate. It was established that the magnitude and sign of the misfit strain influence the domain structure and predominant directions of the polarization vector, providing misfit-dependent phases with different favourable polarization components. Whilst strong enough compressive misfit strains favour a phase with an orthorhombic-like polarization directions, strong tensile misfits only yield in-plane polarization components. The strength of surface screening is seen to condition the existence of closure domain structures and, by increasing, supports the single-domain state depending on the value of the misfit strain. The flexoelectric effect exhibits a weak influence on the phase diagram of multi-domain states when compared with the phase diagram of single-domain states. Its effect, however, becomes significant in the case of skyrmion topological states, which spontaneously form near the film surface when compressive misfit strains are applied. Cooperative influence of the misfit strain, surface screening charges and temperature can set a thin rhombohedral ferroelectric film into a number of different polar and structural states, whereby the role of the flexoelectric effect is pronounced for topologically nontrivial structures.