论文标题

CATFEDAVG:优化联邦学习的沟通效率和分类精度

CatFedAvg: Optimising Communication-efficiency and Classification Accuracy in Federated Learning

论文作者

Sarkar, Dipankar, Rai, Sumit, Narang, Ankur

论文摘要

联合学习允许在不传输原始客户数据的情况下对远程设备进行统计模型的培训。在实践中,异质和大型网络中的培训在网络负载,客户数据质量,安全性和隐私等各个方面引入了新的挑战。佛罗里达州最近的工作致力于提高沟通效率并独立解决不平衡的客户数据分配,但没有一个为这两个挑战提供了统一的解决方案。我们介绍了一个名为Catfedavg的联合学习算法的新系列,该算法不仅提高了沟通效率,还可以使用类别覆盖范围最大化策略提高学习质量。 我们使用FedAvg框架,并引入一个简单有效的步骤,每个时代都会收集有关客户培训数据结构的元数据,中央服务器使用该数据结构来请求重量更新的子集。我们探索了两个不同的变化,使我们能够进一步探索沟通效率和模型准确性之间的权衡。我们基于视觉分类任务的实验表明,使用MNIST数据集增加了10%的绝对准确度,而绝对点的绝对点比FedAvg较低。我们还使用时尚MNIST,KMNIST-10,KMNIST-49和EMNIST-47进行了类似的实验。此外,在全球和个别客户的极端数据不平衡实验下,我们看到该模型的性能要比FedAvg更好。消融研究进一步探讨了其在不同的数据和客户参数条件下展示拟议方法的鲁棒性的行为。

Federated learning has allowed the training of statistical models over remote devices without the transfer of raw client data. In practice, training in heterogeneous and large networks introduce novel challenges in various aspects like network load, quality of client data, security and privacy. Recent works in FL have worked on improving communication efficiency and addressing uneven client data distribution independently, but none have provided a unified solution for both challenges. We introduce a new family of Federated Learning algorithms called CatFedAvg which not only improves the communication efficiency but improves the quality of learning using a category coverage maximization strategy. We use the FedAvg framework and introduce a simple and efficient step every epoch to collect meta-data about the client's training data structure which the central server uses to request a subset of weight updates. We explore two distinct variations which allow us to further explore the tradeoffs between communication efficiency and model accuracy. Our experiments based on a vision classification task have shown that an increase of 10% absolute points in accuracy using the MNIST dataset with 70% absolute points lower network transfer over FedAvg. We also run similar experiments with Fashion MNIST, KMNIST-10, KMNIST-49 and EMNIST-47. Further, under extreme data imbalance experiments for both globally and individual clients, we see the model performing better than FedAvg. The ablation study further explores its behaviour under varying data and client parameter conditions showcasing the robustness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源