论文标题

强大的四足动物通过深度加固学习

Robust Quadruped Jumping via Deep Reinforcement Learning

论文作者

Bellegarda, Guillaume, Nguyen, Chuong, Nguyen, Quan

论文摘要

在本文中,我们考虑了在嘈杂的环境(例如不均匀的地形和可变机器人动力学参数)中跳跃距离和高度的一般任务。为了准确地在这种情况下跳跃,我们使用深入的增强学习提出了一个框架,该框架利用并增强了四足动物跳跃的非线性轨迹优化的复杂解决方案。虽然独立优化限制从平坦地面起飞并需要对机器人动力学进行准确的假设,但我们提出的方法可以提高鲁棒性,从而允许使用可变的机器人动力学参数和环境条件跳下明显不平衡的地形。与步行和跑步相比,在硬件上积极跳跃的实现需要考虑电动机的扭矩速度关系以及机器人的总功率限制。通过将这些约束纳入我们的学习框架中,我们在不进一步调整的情况下成功地部署了策略模拟器,充分利用了可用的机载电源和电动机。我们证明了高度高达6厘米的脚部干扰的环境噪声的稳健性,即机器人标称站立高度的33%,同时跳到2倍的距离。

In this paper, we consider a general task of jumping varying distances and heights for a quadrupedal robot in noisy environments, such as off of uneven terrain and with variable robot dynamics parameters. To accurately jump in such conditions, we propose a framework using deep reinforcement learning that leverages and augments the complex solution of nonlinear trajectory optimization for quadrupedal jumping. While the standalone optimization limits jumping to take-off from flat ground and requires accurate assumptions of robot dynamics, our proposed approach improves the robustness to allow jumping off of significantly uneven terrain with variable robot dynamical parameters and environmental conditions. Compared with walking and running, the realization of aggressive jumping on hardware necessitates accounting for the motors' torque-speed relationship as well as the robot's total power limits. By incorporating these constraints into our learning framework, we successfully deploy our policy sim-to-real without further tuning, fully exploiting the available onboard power supply and motors. We demonstrate robustness to environment noise of foot disturbances of up to 6 cm in height, or 33% of the robot's nominal standing height, while jumping 2x the body length in distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源