论文标题

沙拉:动作检测的自我评估学习

SALAD: Self-Assessment Learning for Action Detection

论文作者

Vaudaux-Ruth, Guillaume, Chan-Hon-Tong, Adrien, Achard, Catherine

论文摘要

关于机器学习中自我评估的文献主要集中在通过共识框架(即校准)视为问题的算法算法的生产。然而,我们观察到,学会正确自信可能会像一个强大的正规化一样,因此,可能是提高性能的机会。首先,我们表明,在动作检测框架内使用的是,学习自我评估得分的学习能够改善整个动作定位过程。实验性结果表明,我们的方法表明,我们的方法在两个动作检测方面均优于两个动作探测器。在Thumos14数据集上,[email protected]的地图从42.8 \%提高到44.6 \%,从50.4 \%\%\%\%\%\%\%\%\%\%。对于较低的TIOU值,我们在两个数据集上都取得了更大的改进。

Literature on self-assessment in machine learning mainly focuses on the production of well-calibrated algorithms through consensus frameworks i.e. calibration is seen as a problem. Yet, we observe that learning to be properly confident could behave like a powerful regularization and thus, could be an opportunity to improve performance.Precisely, we show that used within a framework of action detection, the learning of a self-assessment score is able to improve the whole action localization process.Experimental results show that our approach outperforms the state-of-the-art on two action detection benchmarks. On THUMOS14 dataset, the mAP at [email protected] is improved from 42.8\% to 44.6\%, and from 50.4\% to 51.7\% on ActivityNet1.3 dataset. For lower tIoU values, we achieve even more significant improvements on both datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源